Name: Solutions
Date: June 16, 2017

Quiz No. 2

Show all of your work, label your answers clearly, and do not use a calculator.

Problem 1 (25 points) Find the equations of the following lines:

a The line parallel to the x-axis going through the point (-3,5).

b The line perpendicular to y = 5x - 2 going through the point $(\frac{7}{3}, \frac{7}{6})$.

c The line going through the two points $(3, \frac{3}{5})$ and (-6, -5).

$$M = \frac{-5 - \frac{3}{5}}{-6 - 3} = \frac{-\frac{25}{5} - \frac{3}{5}}{-9} = \frac{-28}{45}$$

$$y - (-5) = \frac{28}{45} (x - (-6))$$
 or

$$y - \frac{3}{5} = \frac{28}{45}(x - 3)$$

d The line parallel to y = x + 3 going through the point (-6, -5).

Problem 2 (25 points) Given the graph of f(x) below:

a Describe in words all of the graph transformations needed to transform f(x) into $g(x) = -\frac{1}{2}f(\frac{1}{2}x+1)$.

Horizontal shift by I to left Horizontal streeth by factor of 2 At Vertical Chrish by factor of 2 Reflection over x-axis.

b Graph the function $g(x) = -\frac{1}{2}f(\frac{1}{2}x+1)$

 $(0,3/2)^{\frac{1}{2}f(\frac{1}{2}x+1)} \qquad (4,\frac{1}{2})^{\frac{1}{2}f(\frac{1}{2}x+1)} \qquad (2,1)$

Problem 3 (25 points) Solve the following inequalities for the set of x-values that make them true and give your answer in interval notation.

a
$$3x + 2 < 6$$

b
$$2x+1 > 4$$
 AND $-x+8 > -3$

$$- \times + 8 > - 3$$

$$\Rightarrow (\frac{3}{2}, 2) \cap (-2, 11) = (\frac{7}{2}, 11)$$

$$\frac{755}{1} \frac{74}{1} = 1\times1$$

$$\frac{755}{1} \frac{74}{1} = 1\times1$$

$$\frac{755}{1} \frac{74}{1} = 1\times1$$

d
$$5x^2 \ge 6$$

$$x^{2} \ge \frac{6}{5}$$
 $\int_{x^{2}}^{x^{2}} \ge \int_{5}^{6/5}$
 $|x| \ge \int_{5}^{6/5}$

$$y = \sqrt{\frac{1}{5}}$$
 $y = \sqrt{\frac{1}{5}}$
 $y = \sqrt{\frac{1}{5}}$

Problem 4 (25 points) Graph each of the following functions:

a f(x) = -|x-2| + 5

c $r(t) = \sqrt{-x-1} - 3$

